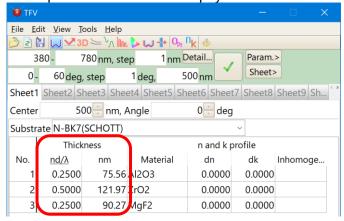
Optical thin film design software TFV

New features from version 2.2 to version 3.0.

[Table of contents]

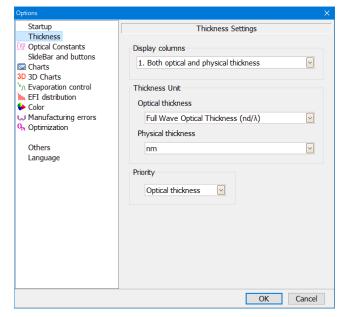

1. S	Summary	2
2. F	Film thickness display format	2
2.1.		
2.2.	. Thickness priority	
3. S	Setting of optical constants outside effective wavelength range	4
	Setting calculation wavelength range	
	Number of sheets	
5.1.		
6. V	Vavelength chart and incident angle chart	
	otal of multiple substrates (Stack)	
	nternal transmittance of the substrate	
9. C	Optimization	10
9.1.	. The unit of the maximum and minimum thickness	10
9.2.		
9.3.	. Stack optimization	11
9.4.	. Improvement of needle search	11
9.5.	. Free-hand mode	12
10.	Manufacturing error	13
11.	Save and read the project	14
12.	Color calculation of spectrophotometer data, user line data	15
13.	Copy/Paste for cell in the design sheet	15
14.	n and k analysis from mono layer measurement data	16
15.	Improve display	
15.	1. High resolution display compatible	16
15.2	2. Language selection	16
16.	Addition of material data	17
17.	Update of substrate data	17
18.	Spectrophotometer file	17
19.	Periodic layer	17
20.	Numerical data	17
21.	Bug fixes	17
22.	Specification change	
22.	1. Display of back side characteristics	
22.2	2. Change help file format	17
23	Film fata file compatibility with old version	18

1. Summary

A description of the main functions added in the upgrade from TFV version 2.2 to version 3.0. For details of functions, refer to the instruction manual. From the TFV main menu, [Help] - [User's Guide(pdf)]

2. Film thickness display format

Both optical film thickness and physical film thickness are now displayed.



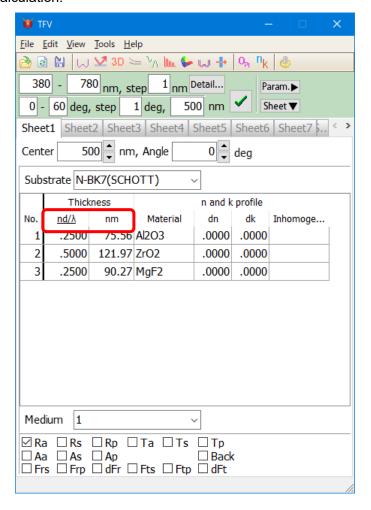
2.1. Selecting the thickness display format

You can select the thickness display format.

Display	(1) Both optical and physical thickness.			
columns	(2) Optical thickness only			
	(3) Physical thickness only			
	(4) Automatic switch optical and physical thickness(Previous version style)			
	In automatic switch mode, if less than 10 value is entered then it will			
	be calculated as the optical thickness, if ten or more value is entered			
	then it will be calculated as the physical thickness.			
Thickness unit	Unit of physical thickness: nm or Angstrom.			
	Unit of optical thickness: nd/Lambda or QWOT.			
	※ If you select the (4) automatic switch mode then the unit of physical			
	thickness is fixed to Angstrom and the unit of optical thickness is fixed to			
	nd/Lambda.			

For change these settings, select the [\$\lefthtarrow\$Options] from the [Tools] menu or toolbar and select [Thickness].

2.2. Thickness priority


If [1. Both optical and physical thickness] is selected, it is necessary to select which of the optical thickness and the physical thickness is given priority in the [Priority] column.

[Operation in optical thickness priority]

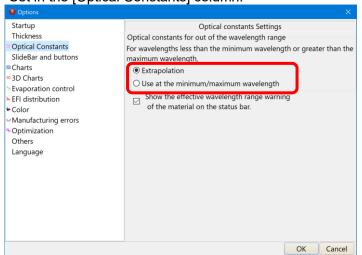
When the center wavelength and refractive index are changed, the display value of the optical thickness is fixed and the physical thickness is changed. The optical thickness is used for calculation.

[Operation in physical thickness priority]

When the center wavelength and refractive index are changed, the display value of the physical thickness is fixed and the optical thickness is changed. The physical thickness is used for calculation.

Underline appears below the preferred thickness units.

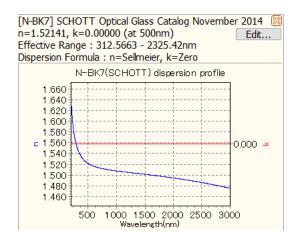
Note

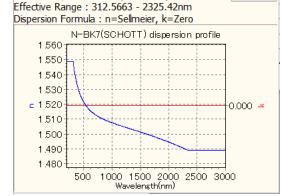

When you change the priority, there is a slight error in calculation by the floating point.

Also, when the priority is different in save the film data and read the film data, there is a slight error in calculation.

3. Setting of optical constants outside effective wavelength range

The calculation method of the optical constant can be selected when the calculation wavelength deviates from the effective wavelength range of the optical constants of the substrate and the film material. You can choose from two types: extrapolate or extend horizontally in the wavelength direction.

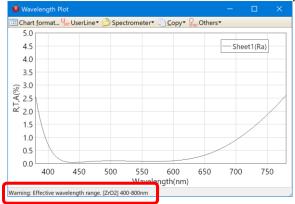

From the TFV main menu, select [Tool] - [Options] to open the options screen. Set in the [Optical Constants] column.



"Extrapolate" is a conventional TFV calculation method.

* Please note that the calculation result varies depending on which one you select.

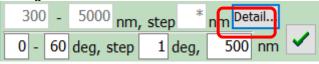
Edit...

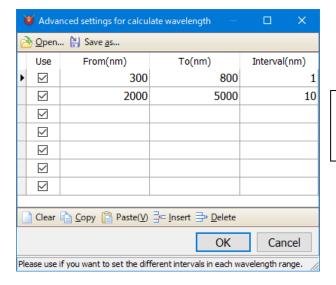

[N-BK7] SCHOTT Optical Glass Catalog November 2014 🔀

n=1.52141, k=0.00000 (at 500nm)

When "Extrapolate" is selected.

When "Use at the minimum / maximum wavelength" is selected.

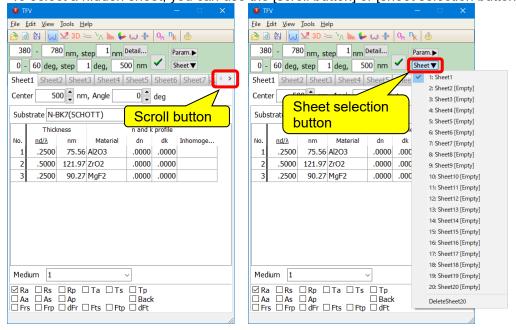

If it exceeds the effective wavelength range, a message is displayed at the bottom of the graph window. If you do not want to display a message, uncheck the " Show the effective wavelength range warning \undersity of the material on the status bar."" on the above option screen.



4. Setting calculation wavelength range

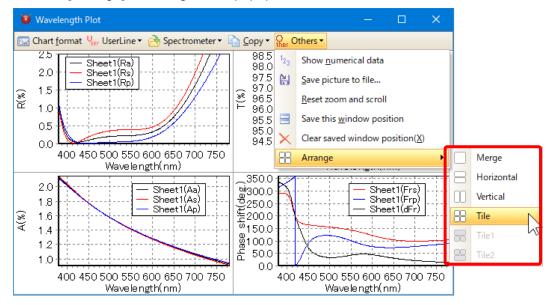
It is now possible to set the calculation wavelength range intermittently or to set different wavelength

intervals for each wavelength range.

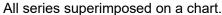

Advanced settings for calculate wavelength window.

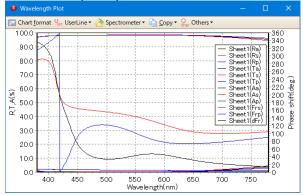
5. Number of sheets

The number of sheets in the main window has increased to 20.

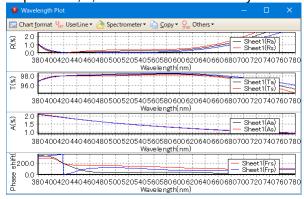

5.1. Select main window sheet

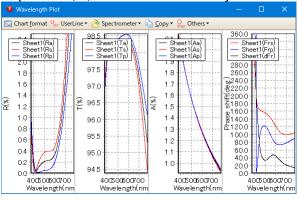
To select a hidden sheet, you can use the [scroll button] or [sheet selection button].



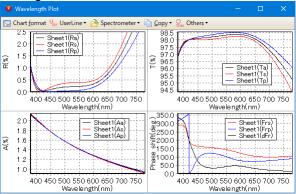

6. Wavelength chart and incident angle chart

You can now choose how to display the graph. For arrange the chart view, select [Others]-[Arrange] on the toolbar or select [Arrange] on the right click popup menu.

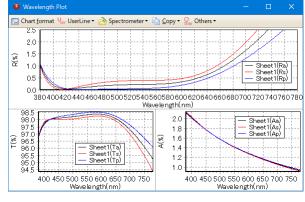

Merge


Horizontal

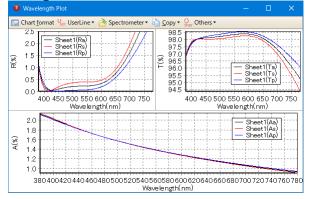
Separate R, T, A and Phase horizontally.


Vertical

Separate R, T, A and Phase vertically.

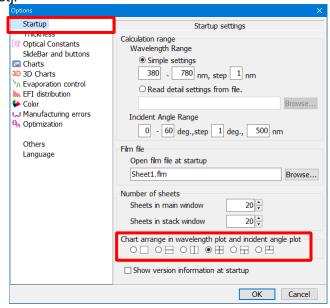

Tile

Arrange tiles R, T, A and Phase.

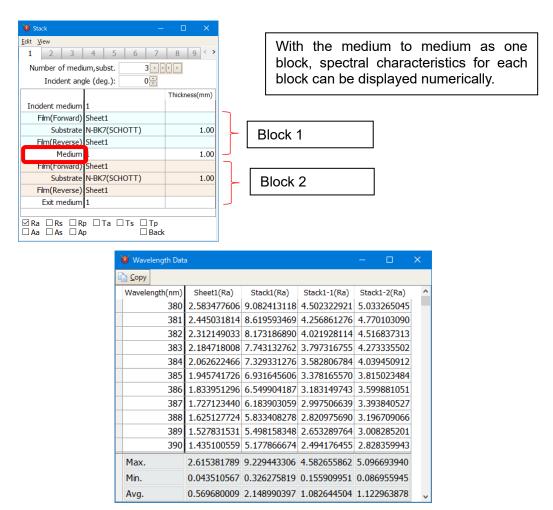

Tile1

Arrange tiles R, T, A and Phase. The upper chart displays large.

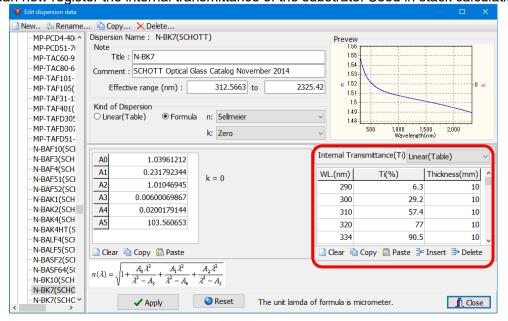
Tile2


Arrange tiles R, T, A and Phase. The lower chart displays large.

Initial settings

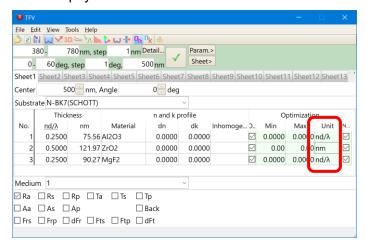

You can set the initial view.

For set the initial view, select [Options] from tool bar on the main window or select [Tools]-[Options] from main menu. Select [Startup]-[Chart arrange in wavelength plot and incident angle plot].

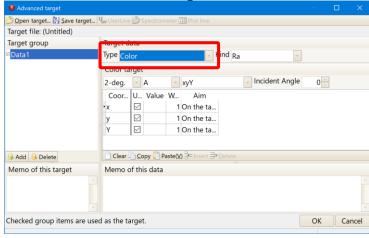

7. Total of multiple substrates (Stack)

It is now possible to calculate multiple substrates. "Both side window" has been renamed to "Stack window".

8. Internal transmittance of the substrate

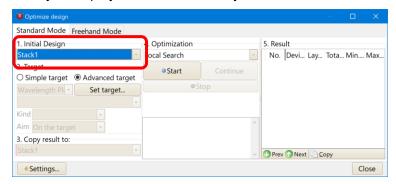

You can now register the internal transmittance of the substrate. Used in stack calculation.

9. Optimization

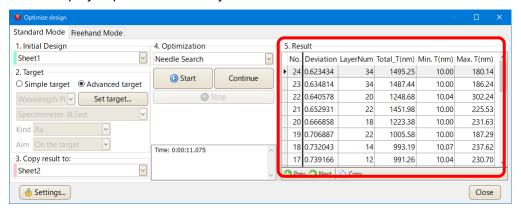

9.1. The unit of the maximum and minimum thickness

It is now possible to select whether to set the maximum and minimum thickness by optical thickness or physical thickness.

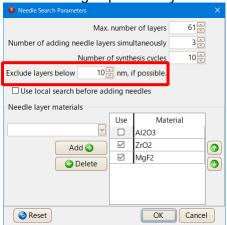
9.2. Color optimization


You can now set colors as target.

9.3. Stack optimization

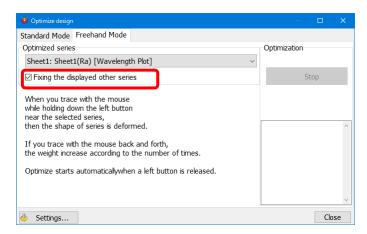

It is now possible to optimize the stack.

When you display the stack window, you can select the stack for the initial design.



9.4. Improvement of needle search

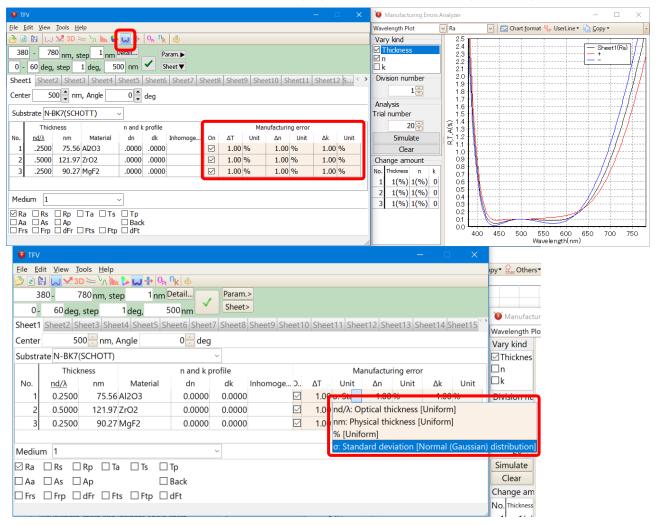
It now displays optimization history at needle search.



Added setting to prevent layers as thin as possible.

9.5. Free-hand mode

When multiple series are displayed for initial design, optimization can be done not to change other series as much as possible.

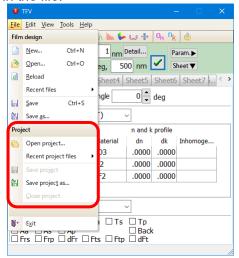

When multiple series are displayed for initial design, if you check "Fixing the displayed other series" then all displayed series for initial design are used as the target.

For example, if it has been displayed Ra, Ra(back) and Ta in Sheet1 on the chart and you select the [Sheet1(Ra)] at "Optimized series" and you check the "Fixing the displayed other series", then the optimization is performed to target the three series of deformed Ra, Ra(back) and Ta. If you uncheck the "Fixing the displayed other series", then the optimization is performed to target only series of deformed Ra.

10. Manufacturing error

You can now set the amount of change for each layer.

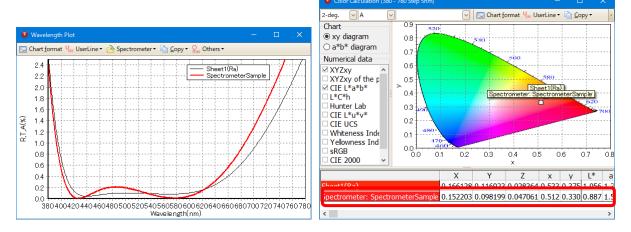
Also, it is now possible to calculate when changing randomly with normal (Gaussian) distribution.



In the display of numerical data, it is now possible to display not only the conventional numerical display but also the numerical value of film thickness, $n \cdot k$ of each Trial.

11. Save and read the project

You can save the design data displayed on each sheet of the main window, the structure of the stack window, the arrangement of the window being displayed, the format of the graph, the user line, etc. as a "project" in the file.


Stored contents

The following contents are saved.

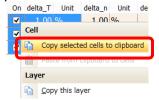
Items	Stored contents		
Film data	Film data file name of each sheets on main window.		
Calculation settings	Start wavelength, end wavelength, wavelength interval, start incident		
	angle, end incident angle, incident angle interval and calculation		
	wavelength of the incident angle characteristic.		
Kind of the plot	Selection state of kind of the plot (Ra,Rs,Rp,TadFt,Back) on each		
	sheets.		
Number of sheet	Number of visible sheet on main window.		
Main window	Display position, size and selected sheet.		
User line	File name of visible user line, line color, line style and line width.		
	Except unsaved user line.		
Photometer line	File name of visible user line, line color, line style and line width.		
	If converted absolute value, reference substrate name also will be		
	saved.		
Chart format	Chart format of each chart.		
EFI distribution	Selection state of kind of the plot (Ave.(s,p), s).		
Color calculation	Selection state of visual field, illuminant, base of the color difference,		
	diagram kind and numerical data.		
Manufacturing errors chart	Selection state of kind of chart (wavelength, incident angle or color),		
	kind of plot(Ra, Rs), vary kind.		
Stack window	Number of visible sheet on stack window.		
	Incident angle, incident medium, film, medium, substrate, exit		
	medium, thickness, kind of plot(Ra, Rs) and window position.		

12. Color calculation of spectrophotometer data, user line data

The color calculation result of spectrophotometer data and user line data displayed in the wavelength chart is displayed on the color window.

The linear interpolation value of the 380 – 780nm 5nm intervals are used. Even when the wavelength range is less or data points is enough, then calculate by extrapolation-interpolation. Always using 5nm intervals for calculation, even if original data is 1nm intervals.

13. Copy/Paste for cell in the design sheet


You can copy-pasting of design data by selecting the cells.

The cell that you want to copy and then selected with the mouse or [Shift + Arrow] key as shown in the figure below.



It is not possible to be selected with the mouse to the check box cell first. In this case, please select from lower right cell first by mouse or use [Shift + Arrow] key.

If select [Edit] – [Copy selected cells to clipboard] from the main menu or [Copy selected cells to clipboard] from the right-click menu, then the contents of the selected range is copied to the clipboard.

If right-click a cell in the upper left corner that you want to paste, and press [Paste from clipboard to cells], then the clipboard contents will be copied.

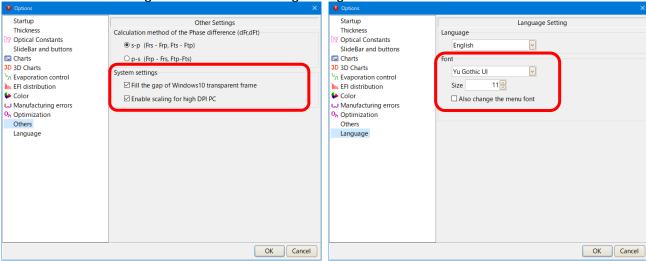
You can also copy from Excel.

14. n and k analysis from mono layer measurement data

Analysis wavelength range can now be set.

Please use it when the wavelength range is too wide or exclude wavelengths with poor

measurement accuracy.


Also, there were cases where analysis could not be done in the previous version, but we improved it so that it can be analyzed as much as possible.

15. Improve display

15.1. High resolution display compatible

Even characters with high resolution display are now displayed without blurring. Characters are

scaled according to the Windows scaling setting. You can also set font and font size.

15.2. Language selection

You can now switch languages without restarting.

16. Addition of material data

Add the material of the Kyoto Thin-Film Materials Institute.

Al2O3(KTM), HfO2(KTM), LaF3(KTM), Ti3O5(KTM), ZrO2(KTM), ZRT2(KTM)

17. Update of substrate data

We updated the glass data of SCHOTT, HOYA, OHARA, SUMITA, HIKARI, CDGM to the latest version as of 2014.

Since internal transmittance is also registered, stack calculations may have different results from previous versions if the glass is thick.

Also, some glasses have their refractive index changed.

Infrared substrates were added. Al2O3(Subst), ALON(Subst), GaAs(Subst), Ge(Subst), Si(Subst), ZnSe(Subst).

18. Spectrophotometer file

Supported reading of Shimadzu spectrophotometer SPC file, JASCO JWS file, Olympus-USPM Ver2.0 file.

19. Periodic layer

It is now possible to expand the periodic layer.

From the menu, select [Edit] - [Expand periodic layers]

20. Numerical data

Previously, only one numerical data window could be displayed, but it became possible to display multiple numeric data window at the same time.

21. Bug fixes

Fixed an error in calculation when color calculation L*a*b*, when XYZ value is 0.008856 or less.

22. Specification change

22.1. Display of back side characteristics

The back side of the transmittance and the back side of the transmission phase are not displayed since they are the same value as the front side.

22.2. Change help file format

The Windows help file has been abolished and changed to display the pdf.

23. Film fata file compatibility with old version

If you save the film data file of the new version in the old version, then the items that do not exist in the old version will be deleted.

Items that are saved will be as follows for each version.

The trial are saved	will be as follows for e	TFV3.0	TFV2.2
	Optical thickness	0	If you read the files of
			TFV3.0 in TFV2.2, the thickness that is set to
Thickness	Dhysical		priority in TFV3.0 (where
	Physical thickness	0	the underline is displayed in the title) will be loaded.
	Material	0	0
n and k profile	dn	0	0
II and k prome	dk	0	0
	Inhomogeneity	0	0
	Tooling	0	0
	dn	0	0
Evaporation	dk	0	0
control	Filter(nm)	0	0
	Start	0	0
	MG	0	0
	On	0	0
	Min	0	0
Optimization	Max	0	0
	Unit	0	×The unit is always nm.
	Needle	0	0
	On	0	×
	delta_T	0	×
Manager	Unit of delta_T	0	×
Manufacturing	delta_n	0	×
error	Unit of delta_n	0	×
	delta_k	0	×
	Unit of delta_k	0	×
Davied lever	Period	0	0
Period layer	Magnification	0	0
	Center		
	wavelength of	0	0
	design		
Others	Incident angle	0	0
Olliers	Substrate	0	0
	Incident medium	0	0
	Monitor glass	0	0
	Comment	0	0

o: Saved item, ×: Unsaved item